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The causal Green function or Feynman propagator for the free-field Klein- 
Gordon equation and related singular functions, defined as distributions, are 
related to the causal time-boundary data. Probability densities and amplitudes 
are defined in terms of the solutions of the Klein-Gordon equation for a complex 
scalar field interacting with an electromagnetic field. The convergence of the 
perturbation expansion of the solution of the Klein-Gordon equation for a 
charged scalar particle in an external field is shown for well-behaved electromag- 
netic potentials. Other relativistic wave equations are discussed briefly. 

1. I N T R O D U C T I O N  

As the nonre la t iv i s t ic  theory  o f  q u a n t u m  mechanics  was be ing  
deve loped ,  physic is ts  were  well  aware  tha t  this cou ld  only be an a p p r o x i m a -  
t ion to the correct  theory ,  which  had  to be invar ian t  unde r  Lorentz  t ransfor-  
mat ions .  This was espec ia l ly  t rue for  the in te rac t ion  of  cha rged  par t ic les  
with the e l ec t romagne t i c  field, since Maxwe l l ' s  equat ions  were a l r eady  
re la t iv is t ica l ly  covar iant .  

The two p r inc ipa l  re la t ivis t ic  genera l iza t ions  of  the  Schr6d inge r  
equa t ion ,  the  K l e i n - G o r d o n  equa t ion  and  the Di rac  equat ion ,  were only  
par t i a l ly  successful  and  were bese t  by  difficulties,  such as nega t ive-energy  
states,  indef ini te  p r o b a b i l i t y  densi t ies ,  and  Zi t terbewegung.  Relat ivis t ic  quan-  
tum mechan ics  ( R Q M )  (Dirac ,  1932) was supe r se de d  by  q u a n t u m  field 
theory  (QFT) ,  which  was found  to be be t te r  su i ted  to descr ibe  the c rea t ion  
and  ann ih i l a t ion  o f  par t ic les .  The s t anda rd  forms o f  Q F T  are subject  to 
o ther  difficulties,  ma in ly  p r o b l e m s  with d ivergent  terms in the pe r t u rba t i on  
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expansion of the transition amplitudes or related quantities. These problems 
have been removed by means of the renormalization procedure. There is 
no clear distinction between the standard formulations of RQM (Bjorken 
and Drell, 1964) and QFT (Bjorken and Drell, 1965), since both are made 
to yield the same set of Feynman diagrams for a perturbation expansion. 

We have developed a different version of RQM for a scalar particle in 
an external electromagnetic field (Marx, 1969, 1970a). This theory allows 
for pair creation and annihilation, as well as particle and antiparticle 
scattering, while retaining a classical field as the wave function that rep- 
resents the particles. This is accomplished by considering the antiparticle 
as a particle propagating backward in time (Stueckelberg, 1941~ 1942; 
Feynman, 1949). Thus, when we observe pair annihilation, the antiparticle 
is the same physical entity as the particle which was turned around in time 
by the interaction. This theory can be generalized to several identical 
particles (Marx, 1970a) in a many-times formalism. The extension to spin- 
1/2 particles requires a modification of the Dirac equation (Marx, 1970b) 
similar to that introduced in QFT by the anticommutation of operators, 
and this theory can be recast into a form of QFT (Marx, 1972) with a fixed 
number of particles. 

We have separated the relativistic wave functions into positive- and 
negative-frequency parts, although these concepts apply in a strict sense 
only when there is no interaction. We have defined probability amplitudes 
for particles and antiparticles, taking advantage of the conservation of 
electrical charge. The Green function used in RQM (Bjorken and Drell, 
1964; Marx, 1969) is neither the advanced nor the retarded one, but the 
Feynman propagator (Feynman, 1949) or causal Green function (Stueckel- 
berg and Rivier, 1950; Fierz, 1950). The time-boundary data that are required 
to write a solution of the field equation of motion in terms of this Green 
function are the positive-frequency part of the wave function at the initial 
time and the negative-frequency part at the final time. 

Here we present a rigorous definition of the probability amplitudes in 
terms of the wave function within the context of the theory of distributions 
and exhibit the connection between the causal Green function and the 
time-boundary conditions. The electromagnetic potentials have to be more 
restricted where they multiply a distribution than when they multiply a 
function. To define current densities and probability densities we assume 
that the wave functions are square-integrable functions of the space vari- 
ables. We find the perturbation expansion of a solution of the Klein-Gordon 
equation for a charged scalar particle in a given electromagnetic field and 
we show the convergence of the series. 

The causal Green function for the Klein-Gordon equation is cus- 
tomarily (Schweber, 1961; Jauch and Rohrlich, 1976) defined as a function 
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by 

1 ~ d4k exp(-i____ kl x) 
A~(x) ~-,o+ ~ - ~  lim j k2_m2+ie  (1) 

where x and k are four-vectors, x = (t, x), k = (ko, k), and m is the mass of 
the particle. This function (actually a distribution) satisfies 

(02+ m2)Ae(x) = - 6 ( x )  (2) 

where 8(x) is the four-dimensional Dirac delta function and O. = O/Ox ~. 
The Green function AF can be expressed in terms of positive- and negative- 
frequency solutions of the homogeneous Kle in-Gordon equation, A (• by 

AF(X) = A(+)(X) 0(t) -- A(-)(X) 0 ( -  t) (3) 

where 

A(• = q:i(27r) -3 f d3k (2ko) -1 exp(q:ik- x) (4) 

and 

ko = +(k2+ m2) 1/2 (5) 

and 0 is the unit step function. 
We give proper definitions (Gel 'fand and Shilov, 1964) of these and 

related distributions in Section 2, and we use these distributions to write 
the solution of  the Kle in-Gordon equation with a given source and appropri- 
ate time-boundary conditions. We examine briefly the extension of this 
approach to the d'Alembert equation, the Dirac equation, and the Weyl 
equation in Section 3. In Section 4 we elaborate on the probabilistic 
interpretation of the wave function and compare this interpretation to 
standard formulations of RQM and QFT. In Section 5 we determine the 
perturbation expansion of the wave function of a scalar particle in an 
electromagnetic field and we prove the convergence of  this series. We discuss 
some of the difficulties encountered in the RQM of a spin-l /2 particle in 
Section 6. We use natural units (c = 1, h = 1) and the time-favoring metric 
in space-time. Greek indices for four-vectors range from 0 to 3 and we use 
the modified summation convention for repeated lower Greek indices, 

a. b = a~b, = a o b o - a "  b (6) 

We follow the customary notation for distributions and their Fourier trans- 
forms (Schwartz, 1966; Stackgold, 1979; Marx and Maystre, 1982). 
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2. THE CAUSAL GREEN FUNCTION FOR THE KLEIN-  
GORDON EQUATION 

In this section we define the causal Green function and related distribu- 
tions that we need to establish the probabilistic interpretation of the relativis- 
tic wave function and to find the perturbation expansion of the solution of 
the Klein-Gordon equation. We define projection operators for the free-field 
Klein-Gordon equation, and we relate the causal Green function to the 
causal time-boundary conditions. 

The A (• are solutions of the homogeneous Klein-Gordon equation; 
they are elements of the space Ae' of tempered distributions defined as linear 
functionals on the space A v of  infinitely differentiable complex functions of 
four real variables that decrease rapidly at infinity. The informal definition 
(4) is replaced by 

(A(~),f)=~:i(2~r)-3/2f~_~odtfd3k 
x (2ko)-lf• t) exp(~:ikot), f~ ~ (7) 

where ko is given by (5), and we use the tilde to indicate the Fourier 
transform of the test function f, 

t) = (27r) -3/2 f d3xf(x, t) exp(+ik  �9 x) f~(k, 

= ff•  t)] (8) 

The definition of the distribution AF in (3) is replaced by 

(AF, f)=-i(2~r)-3/2 f d3k (2ko)-lII; dt f§ t) exp(-ikot) 

+ I~ dtf_(k,t) exp(ikot)] (9) 

We define the operators (Marx, 1969) that separate the positive- and 
negative-frequency parts of tempered distributions, 

P(o • = �89 + iE-XOo) (10) 

where a function of /~  = ( -V2+ m2) ~/2 is defined by 

( F( E )~b,f) = ( F( ko)~b,f) = ( ~, F( ko)f) (11) 

for an arbitrary tempered distribution 4)c 5 e'. These operators will be 
modified slightly when an electromagnetic field is present. Note that we do 
not transform the time variable and that, as long as m is not equal to zero, 
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F(ko) is an infinitely differentiable function of the k~ that does not change 
the behavior o f f  at infinity for the functions F that we use in this paper. 
We define the positive- and negative-frequency parts of a distribution 4) by 

~b(• = P~o• 4~ (12) 

The operators P(0 • satisfy 

P(o+) + P(o - )=  1 (13) 

p(+)o(-) - o(-)o(+) - (2/~)-2(02 + m e) (14) 
0 *0 - -  --0 *0 - -  

(P(o~)): = P(o •  (2/~)-2(02+ rn:) (15) 

whence the P(o • are projection operators in the space of solutions of the 
homogeneous Kle in-Gordon equation, although 4) is not restricted to this 
subspace. 

We now use the causal Green function to solve the inhomogeneous 
Klein-Gordon equation 

{(02+rnZ)dp(x)}=to(x), t i<t<tf  (16) 

where the braces indicate that the derivatives are taken in the sense of 
functions, that is, we are assuming that q5 is a twice differentiable function 
of the x~ in this region. 

We use operators P~0 • to find the positive- and negative-frequency 
parts of Av as defined in (9) and obtain 

(A(F+),/) = --i(2r -3/2 f d3k (2ko) -1 

f; x dt]+(k, t) exp(-ikot) (17) 

(A~F-), f ) =  --i(2~') -3/2 f d3k (2ko)-' 

X f~ dtf_(k,t) exp(ikot) (18) 

which are similar but not equivalent to the definitions of A (~) in (7). 
To allow for the inclusion of time-boundary conditions, we assume 

that the distributions 4~ and ~ are functions with jump discontinuities A~b~ 
and A&~ at t~, and A4~f and A~y at b. Equation (16) then is extended to 

(02+ m2)~b = to + A&i(x) 6'(t - ti) + A~i(x) 6(t - ti) 

+ AgS/(X) t3'(t-tf)+A~bf(x) 6(t-tf)=t5 (19) 
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which defines the source distr ibution o5. Then 

~b = --AF * o3 (20) 

05(• --A(r • * a3 (21) 

where  the asterisk indicates the convolut ion  product .  We can specify 
arbitrari ly the jumps in the funct ion ~b and its t ime derivative at ti and  t s, 
but  they will not co r respond  to bounda ry  values unless fur ther  restrictions 
are imposed  on the solut ion outside the interval. 

We first recall the solut ion of  the K l e i n - G o r d o n  equat ion by means  of  
the re tarded  Green  funct ion AR, which also satisfies (2) and vanishes for  
t < 0. The solut ion is still given by (20) where  Av is replaced by  2XR. We 
assume that  ~b vanishes for  t < ti and we give the initial values of  ~b and  ~, 
which are then equal  to the j umps  at ti. This solut ion satisfies the Kle in-  
G o r d o n  equat ion  and the initial value ass ignments;  we disregard the j u m p s  
at tl, which affect the solut ion only for t > t I. I f  final values were given, we 
could still use the re tarded  Green  function,  but  the bounda ry  condi t ions 
would  have to be satisfied via integral equat ions;  it would  be much  easier 
to use the advanced  Green  function. 

We have  to examine  the solut ion fur ther  to find the natural  b o u n d a r y  
condit ions for  the causal  Green  function,  which al low us to find the solut ion 
directly f rom (20) or (21). The j umps  in ~b (• can be expressed in terms of  
the j u m p s  in q5 and ~ th rough  (12). Equat ions  (17) and  (18) show that  A(v +) 
vanishes for  t < 0  and that  A(v -) vanishes for  t > 0 .  We use (10), (14), and  
(15) to derive 

A~ +~ * Ea4,,(x) ~ ' ( t -  t,)) + ~ , ( x )  ~ ( t -  ti)] 

= -2iA(v+)(x, t -  t,) */~A~bl+)(x) - �89 6 ( t -  ti) (22) 

where the convolut ion  on the right side extends over  the three-d imens iona l  
x space only and the second term does not  affect the value of  the funct ion 
for  t > ti. Equat ion  (22) and similar  relat ions at the final t ime and for  the 
negat ive-f requency par t  show that  q5 (+) is de te rmined  for  t imes be tween t~ 
and t I by its discont inui ty  at t~ and the source to, and that  ~b (-) is de te rmined  
in this t ime interval by its discontinui ty at ty and the source ~o. We con- 
sequently assume that  4) (+~ vanishes for  t < t~ and has a j u m p  equal  to 
~bl+)(x) at t = t~, and that  4> (-) vanishes for  t >  t I and has a j u m p  equal  to 
-~b~-)(x) at t = t I. We set 

~ (+)=  -A(~  ) * [ ~ o ( x ) -  2i/~bl+~(x) 6 ( t -  ti)] (23) 

~b ( - )=  --At-) * [w(x)  + 2i/~qS~-)(x) g ( t -  ty)] (24) 

where w is known for  ti < t < t I and we assume that  it vanishes outside this 
interval. Thus,  4)= ~b(+)+ 4> (-) is de te rmined  by the source w, the value of  
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~b (+) at ti, and the value of  ~b (-) at t/, which are the causal t ime-boundary 
conditions. 

We compute 

( 0 2 " 4  - mZ)dp = o2 + (b l +) 6 ' (  t - t i) - iff,61 +) 6(  t - t i) 

- qb ( - )  6 ' ( t  - t f )  + iEfb ( - )  6 ( t  - t f )  (25)  

and compare this equation with (19) to determine the jumps in ~b and 
at times ti and t I in terms of  the given boundary values. 

In Section 4 we show how these t ime-boundary conditions are related 
to the probabilistic interpretation of the relativistic wave function. 

3. CAUSAL GREEN FUNCTIONS FOR OTHER EQUATIONS 

For m =0,  the Kle in -Gordon  equation reduces to the d 'Alembert  
equation. Instead of (5), we have 

ko : (k~+ k~+ k2) 1/2 (26) 

and k~ is no longer an infinitely differentiabte function of the ki for arbitrary 
u. Since 

d 3 k  = k 2 dko d i l l ,  (27) 

where dF~ is the element of  solid angle, the definitions (7) for A (• and (9) 
for Av give the correct definitions for D (• and D v  in the limit m ~ 0 .  
Nevertheless, we cannot use the causal Green function for a real field (such 
as the electromagnetic fields and potentials), because the positive-frequency 
part of  a real field determines the negative-frequency part and vice versa. 

The Dirac equation for bispinors $ is 

( - i y .  0+ m ) O ( x )  = w(x) (28) 

where the y~ are a set of  Dirac matrices that satisfy 

y~y~ + y~y~ = 2 g ~  (29) 

and w is now a spinor source. The causal Green function for this equation 
is 

SF = (iT" O+ re)A j: (30) 

The projection operators (10) are not useful for a bispinor field because, 
for a first-order equation of motion, ~ is not given, but is determined by 
the equation. We define instead 

P(• l r ' •  (31) 0 = ) L  x 

where ~ = y0~/; these are true projection operators that satisfy 

(P(o• 2 = P(o • --o~176 -- --0~176 = 0 (32) 
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for an arbitrary distribution ~. These operators separate the two parts in 
the usual expansion of the spinor field, 

O(X) = (2~)3/2 d3p ~=• [ux(p)bA(p, t) exp(ip,  x) 

+ v~ (p)d~(p, t) exp( - ip  �9 x)] (33) 

where the index A refers to the two helicity states and 
E : p o  = (p2+  m2)1/2 

(34) 
(p .  7 -  m)u~(p) =0,  (p .  7 + m ) v ~ ( p ) = 0  

The Weyl equation for a massless (two-component) spinor field X is 
�9 A B  A -1o'~ XB,~, = w (35) 

where the o-, are the unit matrix and a set of Pauli matrices which satisfy 
Ac Ac  o'~Aso-~ + O'vABO'~, = 2g~,~6B c (36) 

The corresponding causal Green function is 

SFAB = iO'.ABDF,. (37) 

Equation (35) is also a first-order equation, and there are only two indepen- 
dent amplitudes in X. The solutions of the homogeneous equation have only 
one helicity state for each sign of the frequency; hence, we write the general 
expansion in the form 

X(x) = (27r)-3/2 I d3p [X+l(fi)b(P' t) exp(ip ,  x) 

+X-~(- f i )d(p ,  t) e x p ( - i p ,  x)] (38) 

where the helicity spinors satisfy 

or. fix ~ (fi) = AX ~ (fi) (39) 

The corresponding projection operators are 

P(o • �89 q: i/~-1o "" ~7) (40) 

which also satisfy (32). 

4. PROBABILITY AMPLITUDES FOR SCALAR PARTICLES 

We now show how we define probability amplitudes (Marx, 1969, 
1970a) in a relativistic theory of the quantum mechanics of scalar particles 
in an external electromagnetic field. These amplitudes and the corresponding 
probability densities are a generalization of the basic concepts of the 
nonrelativistic theory�9 The probabilistic interpretation is closely related to 
the causal time-boundary conditions. 
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The equation of motion for the wave function ~ is obtained from the 
Klein-Gordon equation by the gauge-invariant substitution 

O. --) D~ =0.  + ieA. (41) 

which leads to the equation 

(D2+ m2)4)(x) = 0 (42) 

This is a second-order equation in time, which is equivalent to two 
Schr6dinger-type equations. Thus, the wave function is related to two 
probability amplitudes g(~:)(x), one for the particle and one for the antipar- 
ticle. To define the product of the distribution cb by the potentials A, ,  we 
restrict the potentials to be infinitely differentiable functions of slow growth 
at infinity. 

We use the operators 

P(• = 1(1 + iE-1Oo) (43) 

to define the positive- and negative-frequency parts of the wave function, 

~b(• = P(• (44) 

and the probability amplitudes 

g(• = (2/~)l/2~b(• (45) 

The definition (44) is not really covariant under simultaneous gauge transfor- 
mations of the A~ and ~b, because exp[iA(x)] is affected by functions of 
the operator/~, although the Klein-Gordon equation is covariant. We note 
that the Ao could be made to vanish by choosing an appropriate gauge. We 
also usually assume that there is no overlap between the particle amplitudes 
and the external electromagnetic fields at ti and ty. 

For the Klein-Gordon equation, the probability density of the nonrela- 
tivistic theory is replaced by the charge density Jo, which is part of the 
conserved current density 

j~ = i[ qh * D j k  - (D*~b*)&] (46) 

In this equation and in what follows we interpret 4~ as the function that 
corresponds to the distribution. The functions are assumed to be square- 
integrable over all space for times between ti and t s even when multiplied 
by the potentials. This requirement relaxes the conditions on the potentials, 
and we find sufficient conditions for the convergence of the perturbation 
expansion in Section 5. The conserved charge is 

Q = f d3xjo(x) = a(+)(t) - A(-)(t) (47) 
J 
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where 

A~)( t )  = f dax ]g~• 2 (48) 

In particular, we interpret the A ~• at the initial and final times as prob- 
abilities. Conservation of charge implies that 

A~ +)+ AI -) = ~iA(+)--zTtf" a(-) (49) 

where a(:~) - A(• .'-,i.f - t~.f). The quantities on the right side are determined by 
the given boundary values th~ +) and ~b~ -). 

If we are describing particle scattering and pair annihilation, g~-) 
vanishes and gl +) is normalized to 1, that is, 

AI +)= 1, A} - )=  0 (50) 

Equations (49) and (50) imply that 

A(+) ~_ a(-) 0 <- A} +) < I - ~ i  =1,  - 1 ,  0-<AI-)-<I (51) 

and we interpret A} +) as the probability for particle scattering and AI -) as 
the probability for pair annihilation; one of the two has to occur. 

If we are describing antiparticle scattering and pair annihilation, we 
similarly have 

a l  +)= 0, A} - )=  1 (52) 

and (51) is still valid. Now A~ +) is the probability for pair creation and AI -) 
is the probability for antiparticle scattering. This selection of boundary 
conditions is reminiscent of the reflection and transmission of a particle by 
a potential barrier. Here the potential barrier occurs in the time direction; 
a particle coming from the past is either transmitted (particle scattering) or 
reflected (pair annihilation), or an antiparticle coming from the future is 
either transmitted (antiparticle scattering) or reflected (pair creation). 

We interpret Ig~+)(x, tl)] 2 as the probability density for a particle at the 
final time and Igr t~)] 2 as the probability density for an antiparticle at 
the initial time. The quantities Ar177 at intermediate times are not restricted 
to be less than 1 and thus should not be interpreted in terms of probability 
amplitudes. This is not a serious restriction, since observations at these 
times would change the dynamical development of the system. Nevertheless, 
we extend the name of probability amplitudes to the gr and probability 
densities to the pc• for arbitrary t, where 

pr t) = Igr t)] 2 (53) 

We note that the charge density jo is not equal to the difference pC+)_ pC-) 
even when the electromagnetic field vanishes. 
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This definition of probability amplitudes is based on the work of 
Feshbach and Villars (1958), who also separate the solutions of the Klein- 
Gordon equation into their positive- and negative-frequency parts. In their 
approach, a wave function that is normalized so that the charge Q is § 
represents a particle. This implies that A~+)(t) is greater than 1 unless ~(-) 
vanishes, which is incompatible with our probabilistic interpretation of the 
wave function. Similarly, a wave function for which Q is -1  represents an 
antiparticle, and this makes A(-)(t) greater than I. Their approach is also 
used by Bjorken and Drell, 2 who define probability amplitudes in the case 
when the positive- and negative-frequency parts can be decoupled by a 
Foldy-Wouthuysen transformation. 

Although these authors do not discuss the solution of the Kle in-Gordon 
equation for particular boundary conditions, we see that their normalization 
of  the charge can be effected by choosing the initial conditions for g(§ and 
g(-), or 6 and ~, so that 

A~ +) = 1, AI -) = 0 (54) 

for particle scattering, or 

AI = 0, AI = 1 (55) 

for antiparticle scattering. Even though this is a single-particle theory, the 
additional charges present at tf might be interpreted in terms of the creation 
of one or more pairs, which is the picture that results from QFT. 

Our probabilistic interpretation can be generalized to a system of  n 
identical particles (Marx, 1970a). A symmetric wave function that depends 
on n four-vectors can be decomposed into n + 1 independent amplitudes. 
The boundary conditions for a dynamical problem call for the specification 
of the n + 1 amplitudes with all particles at the initial time and all antiparti- 
cles at the final time; one of  these amplitudes is given normalized to 1 and 
the others are set equal to 0. The dynamics then determines the n +1 
amplitudes with the particles at the final time and the antiparticles at the 
initial time, related to probability densities for these particles and antiparti- 
cles, and the different amplitudes correspond to mutually exclusive pro- 
cesses. 

It is difficult to compare our theory with the standard QFT, mainly 
because there are many formulations of the latter that are equivalent to 
each other only in a more or less formal sense. Also, few of the formulations 
deal with the time translation operator U(t, to); most of the results are 
formulated in terms of the scattering matrix S, which implies that ti ~ - o o  
and tf--> +oo. We note that even when the electromagnetic field is dynamical, 

2See Bjorken and Drell (1964), pp. 198ff for a discussion of the interpretation of the scalar 
wave function. 
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our theory does not contain closed particle loops of other infinite terms 
such as particle self-energy contributions. 

If we consider the standard QFT in the Schr6dinger picture and specify 
a one-particle state at the initial time, the final state will have contributions 
from a one-particle state, a two-particle, one-antiparticle state, and so on. 
In our RQM, these added states only appear in other dynamical problems 
with two or more particle variables. 

5. P R O O F  OF CONVERGENCE OF THE PERTURBATION 
EXPANSION 

We now obtain the perturbation expansion (Marx, 1979) of the solution 
of (42) and prove its convergence for well-behaved potentials. 

Here we are not interested in the convergence of a series of distributions, 
but we consider the corresponding functions and we prove convergence in 
the L 2 norm in space and L ~ norm in the time interval (t. tf). 

We expand the wave function in a power series of the charge, 

ok(x) = ~ eJck(l)(x) (56) 
l=O 

and the ~b (~) satisfy 

(02+ m2)6 (~ = 0 (57) 

(5s) (a 2 + m 2 ) ~  ( ' )  = _ iA ,~ ,~ ,  ( ~  2 i A , / ~  ! ~ = ~ ( ' )  

( a 2 + m 2 ) ~ ( t ) _  ;,~ .,(1-~) ,~,a .~ ( l -a )+A2~{ t  2) - -  - -  t z l . / j . , p , t / )  - -  z .  l , Z l . u , t  P ,/ ,~ 

= w  (1), I> -2  (59) 

~io)(+) = ~bl+), ~o) ( - )  = ~ - )  (60) 

~I ')(+) = 0, ~b~])(-) = 0, l ->l  (61) 

If the particle state is given at ti by a square-integrable amplitude bl +) 
(the case of the antiparticle state given at tf follows mutatis mutandis), the 
terms of the perturbation series are given by 

b(~ 2iA~) */~bl +) 6 ( t - 6 )  (62) 

~b U)= -A~ * w (t), I>_ 1 (63) 

where the to (1) are given in terms of the previously calculated d, (t-l) and, 
for 1 > 1, 4~ Ct-2). We recall that the Fourier transform of a square-integrable 
function is also square-integrable. In terms of the Fourier transform a(k) 
of g~+)(x), we can write 

q~(~ ) = (277-) -3/2 f d3k (2ko)-'/2a(k) 

• exp[-iko(t- t~)] exp( ik ,  x) (64) 
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which implies that [[q~(~ is finite and independent  of  t. The Fourier 
transform of  &(t~ is 

/{I ~(l~(k, t) = ~ o  dt' oS(t)(k, t') e x p [ - i k o ( t -  t')] 
ti 

+ dt' oS(~)(k, t') exp[iko(t - t')] (65) 
t 

whence the L 2 norm of  4~ (t~ as a function of  k is bounded by virtue of the 
relation 

[[4;(~(k, t)[I z= f d3k [,~'~(k, t)] = 

-_ at' -~,~l~o"~(k, t')l 2 
ti 

dt' ~ t') 2 (66) =I,; ~ ~ 

Although in the Coulomb gauge the potentials are free of  arbitrary (physi- 
cally meaningless) parts (Marx, 1970c), we use the gauge in which Ao 
vanishes to facilitate the proof  of  convergence of  the perturbation series. 
The fields ~b in two different gauges are related by the phase factor exp(ieA). 
In this gauge, the source in (58) and (59) reduces to 

w (~)= - 2 i V .  (A4,(t-1))+ iV �9 A~b (~ 1)-AZ~b(/-2)(1-~11) (67) 

The integrand in (66) is then bounded by 

[[(2ko)-~o3(~)(k, t')l] = 11(2/~)-%~(~)(x, t')[I 

1 
-< suplAI I1~('-'11 +~--~m supl v "  A111~('-1)11 

+ sup(A2) ]l q 5 (t-2) I1(1 - ~11) (68) 

where the supremum is taken over all space and over the time interval 
(t~, ty). We have used the equality Ilf[I--IIJrll and the inequalities ]k/ko[ < 1 
and 1/ko < 1/m. We thus find that 

[[ ~b (t)][ -< a II ~ ' - ' l l  + b II,b ~'-=~ll (a - ~ . )  (69) 

where we now include the L ~ norm for the t-dependence in the symbol II 
and set 

a = ( t f -  ti) sup(lA[ + IV. A[/2m), b = (t e -  t,) sup A2/2m (70) 
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Thus, the norms of the terms in the perturbation expansion are bounded 
above by the terms of the sequence defined by the recursion relation 

M,=aM,_,+bM,_2(1-Su), Mo = II <~ M , > 0  (71) 

which has the solution 

MI = aMo, All = M1 r1-1 (72) 

r = a/2 + [a2 /4+  b] 1/2 (73) 

A bound on the norm of a finite sum is 

e'q~ (') ~ [ "1 <- 2 e'M,=Mo l+ea 1-(er)  (74) 
t=0 t=o 1 - e r  _] 

whence the perturbation series converges uniformly in t and in L 2 in x if 

er < 1, (75) 

where e is the electric charge and r depends on the electromagnetic poten- 
tials. 

This concludes the proof  of the convergence of the perturbation series 
defined by the recursion relation (63). 

6. SPINOR FIELDS 

The bispinor field in an external electromagnetic field obeys the Dirac 
equation 

( - i 7 "  D+ m)~(x) = 0 (76) 

The conserved current density 

j~ = ~73,,.~b (77) 

has a positive-definite charge density Jo, which gives a charge 

Q = I  d 3 x * * * = I  d3p a=~l y~ [[ba(p't)12+ld*(p't)[2] (78) 

If we assume that the ba and da correspond to the probability amplitudes 
in momentum space, it is reasonable to combine the helicity states to find 
the amplitudes in position space. We recall that 

wa(p)=[(E+m)/2m]'/2[l+oz "p/(E+m)]w(a~ (79) 
(o) where wA is a collective designation for u~ and va and the wa are constructed 

from the helicity spinors Xa ; the precise form of the w(a ~ depends on the 
choice of "L.. We have 

~oU~~ = u~~ ~oV~~ = -v~~ (80) 
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We follow Schr6der (1964) and Marx (1968) and define the probability 
amplitude g (Marx, 1970b) obtained from 0 by a free-field Foldy- 
Wouthuysen transformation, 

g(x) = [(/~ + rn)/ZE]l/2[1 - i~l" V/(/~ + m)]0(x) 

= (2~-) -3/2 f d3p ~ [u?)bA(p, t) exp(ip,  x) 

+ v(x~ (p, t) exp(- ip  �9 x)] (81) 

and we separate the positive- and negative-frequency parts, 

g(• = �89 + yo)g(x) (82) 

The use of these amplitudes avoids problems related to Zitterbewegung, but 
the charge 

Q = f d3x [g(+)*g(+)+g~-)*g(-)] (83) 

is the sum of two terms and the probabilistic interpretation based on (47) 
is no longer valid. 

In QFT, the equations are modified by the anticommutation of 
operators. We can similarly modify the equations of motion (Marx, 1970b) 
so that the conserved charge is the difference of the two terms, or we can 
use a many-times QFT (Marx, 1972) to accomplish the same purpose. The 
solution of the problem of the charged particle in the given electromagnetic 
field follows the same steps outlined in the previous section. 

The free massless spinor field X forms the conserved current density 

j ,  =xa~,~, /IB (84) 

and the corresponding charge 

Q =  f d3p (Ibl2+ldl 2) (85) 

is also the sum of two positive terms. 

7. CONCLUDING REMARKS 

We have defined the causal Green function for the Klein-Gordon 
equation and related distributions, and we have determined the correspond- 
ing causal time-boundary conditions. 

We have separated the wave function of RQM into positive- and 
negative-frequency parts to provide the theory with a probabilistic interpre- 
tation for particle and antiparticle amplitudes. 
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We have used these distributions to find the perturbation expansion 
of the wave function for a charged scalar particle in an external electromag- 
netic field and we have shown the convergence of this series for appropriately 
bounded potentials. 

The Dirac equation for spin-l/2 particles requires a modification that 
will make the charge density indefinite before this form of RQM is appli- 
cable. This is accomplished in QFT by anticommuting two field operators, 
and similar modifications can be introduced in RQM. 

There is no need in our formulation of RQM for the standard renor- 
malization procedure, since there are no infinite terms in the perturbation 
expansion. 

REFERENCES 

Bjorken, J. D., and Drell, S. D. (1964). Relativistic Quantum Mechanics, McGraw-Hill, New 
York. 

Bjorken, J. D., and Drell, S. D. (1965). Relativistic Quantum Fields, McGraw-Hill, New York. 
Dirac, P. A. M. (1932). Proceedings of the Royal Society (London), 136, 453. 
Feshbach, H., and Villars, F. (1958), Reviews of Modern Physics, 30, 24. 
Feynman, R. P. (1949). Physical Review, 76, 749. 
Fierz, M. (1950). Helvetica Physica Acta, 23, 731. 
Gerfand, I. M., and Shilov, G. E. (1964). Generalized Functions, Academic Press, New York, 

Vol. 1, pp. 287ff. 
Jauch, J. M., and Rohrlich, F. (1976). The Theory of Photons and Electrons, Springer, New 

York, pp. 178ff. 
Marx, E. (1968). Nuovo Cimento, 57B, 43. 
Marx, E. (1969). Nuovo Cimento, 60A, 669. 
Marx, E. (1970a). Nuovo Cimento, 67A, t29. 
Marx, E. (1970b). International Journal of Theoretical Physics, 3, 401. 
Marx, E. (1970r International Journal of Theoretical Physics, 3, 467. 
Marx, E. (1972). Nuovo Cimento, lIB, 257. 
Marx, E. (1979). International Journal of Theoretical Physics, 18, 819. 
Marx, E., and Maystre, D. (1982). Journal of Mathematical Physics, 23, 1047. 
Stueckelberg, E. C. G. (1941). Helvetica Physica Acta, 14, 588. 
Stueckelberg, E. C. G. (1942). Helvetica Physica Acta, 15, 23. 
Stueckelberg, E. C. G., and Rivier, D. (1950). Helvetica Physica Acta, 23, 215. 
Schr~der, U. (1964). Annalen der Physik, 14, 91. 
Schwartz, L. (1966). Mathematics for the Physical Sciences, Addison-Wesley, Reading, 

Massachusetts. 
Sehweber, S. S. (1961). An Introduction to Relativistic Quantum Field Theory, Row, Peterson 

& Co., Evanston, Illinois, pp. 167-183. 
Stackgold, I. (1979). Green's Functions and Boundary Value Problems, Wiley, New York. 


